

含邊界構材之鋼板混凝土複合牆反覆載重試驗研究

黄尹男1 張長菁2

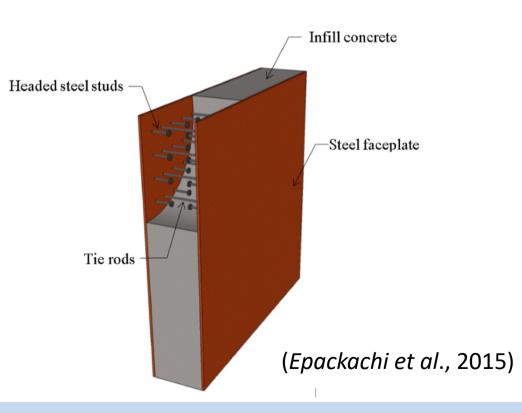
¹國立台灣大學土木系副教授 ²國家地震工程研究中心副研究員

2018國家地震工程研究中心實驗成果研討會 2018年7月16日

Outlines

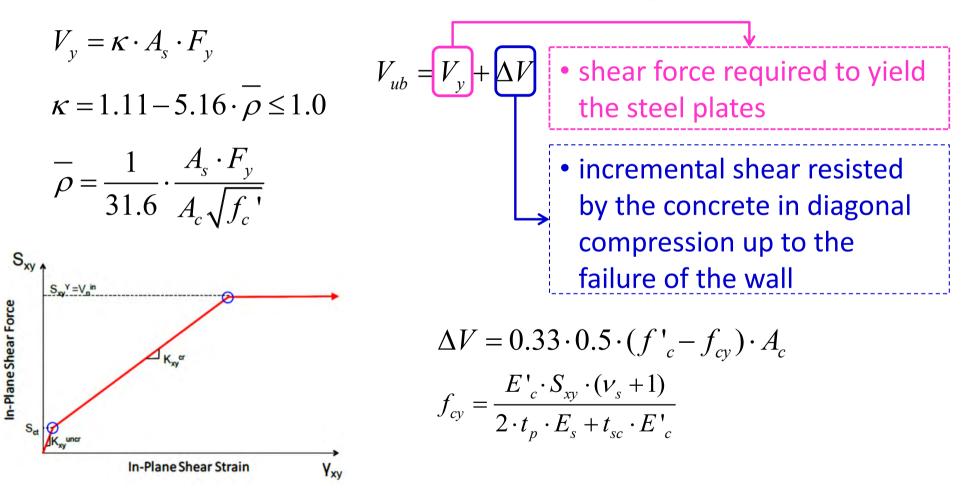
Introduction

Experimental Program


Experimental Results

Conclusions

Steel-Plate Composite Walls

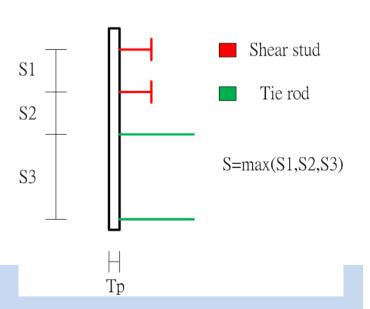

- Steel-plate composite (SC) walls recently have been used for the construction of nuclear power plants.
- SC walls are composed of
 - Steel faceplates
 - Infill concrete
 - Connectors
 - Tie rods
 - Shear studs
- Connections
 - Panel
 - RC foundation

Strength of SC Walls

AISC N690s1 (2015) In-plane shear strength (Booth et al., 2015)

Purpose

- To investigate the elastic and *inelastic* behaviors of SC walls with boundary elements for different failure mechanism
- To address the inelastic response of five SC walls with boundary elements subjected to reversed, in-plane cyclic loading.
- > To study two kinds of failure modes
 - Four **shear-critical** walls
 - with an aspect ratio of 0.75 & 1.04
 - thickness of 3 cm & 5 cm for boundary elements
 - One **flexure-critica**l wall
 - with an aspect ratio of 1.22
 - thickness of 2 cm for boundary elements



Test Specimen

Design variables

		H×L×T(cm)	t _p (cm)	t _e (cm)	RR(%)	S(cm)	SR	AR	f' _c (kgf/cm ²)
Shear critical	SCB1	<mark>90</mark> ×120×25.9	0.45	3	3.47	11	24.44	0.75	210
	SCB2	<mark>90</mark> ×120×25.9	0.45	3	3.47	11	24.44	0.75	350
	SCB3	104×100×22.5	0.45	3	4	10	22.22	1.04	210
Flexural critical	SCB4	104×100×22.5	0.45	5	4	10	22.22	1.04	210
	SCB5	146×120×25.9	0.45	2	3.47	11	24.44	1.22	210
cinical -									

- Reinforcement ratio (RR) : $\rho = 2T_p / T$ T_p : Steel plate thickness
 - $T \,$: Overall thickness
- Faceplate slenderness ratio (SR) : S/T_p
 - S : Connector spacing = max(S₁, S₂, S₃)
 - S_1 : Stud spacing
 - S_3 : Tie rod spacing
- Aspect ratio (AR) : H / L

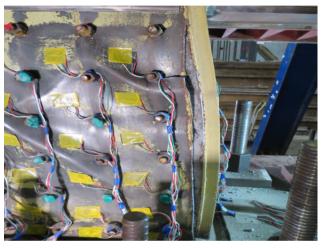
Test Program

Test Program

Test setup

Concrete cracks at the End of Test (Flexural critical)

SCB5



Damage to Faceplates (End of Test) (Shear critical)

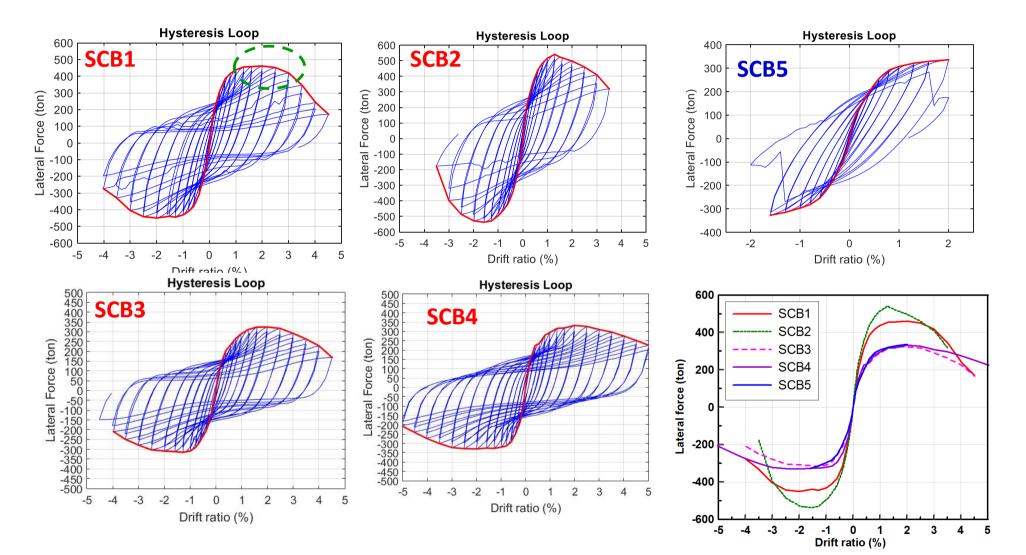
SCB2

CB
$\mathbf{U}\mathbf{D}$

SCB3

SCB4

Damage to Faceplates (End of Test) (Flexural critical)


SCB5

Force-Displacement Cyclic Response

Conclusion

- The shear-critical specimens of this study demonstrated very ductile behavior. Both specimens reached a drift ratio of 3~5% without losing 80% of their peak capacity.
- The test of the flexural-critical specimen (SC5) stopped at a drift ratio of 2% after the brittle rupture of the welding between the endplate and baseplate. The connection design for such SC walls is challenging and needs to be conducted carefully.
- The lateral-load strength of SC walls can be predicted well using numerical analysis.

Thank you !!

C.C.Chang/ <u>ccchang@ncree.narl.org.tw</u> Y.N.Huang/ <u>ynhuang@ntu.edu.tw</u>

